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DESIGN OF FIBROUS C O M P O S I T E S  

W I T H  A S S I G N E D  S T R A I N - S T R E N G T H  C H A R A C T E R I S T I C S  

A. G. Kolpakov UDC 539.3 

A solution of the problem of designing composites reinforced by high-modulus fibers with preassigned 
strain-strength characteristics is presented. The problem belongs to the class of ill-posed problems [1]. The 
problem is studied numerically; a numerical algorithm for solving the problem is proposed and some examples 
are considered. 

1. S t a t emen t  of the  Prob lem of Calculat ion of Fibrous Composi tes .  For calculating the 
averaged elastic cons t an t s  {aijkl } in the reinforcement plane of the composite (i, j ,  k, l = 1, 2 and the layers 
are taken parallel to the plane Oxlx2) and local stresses {o'~j } in fibrous composites reinforced by periodically 
alternating layers of fibers (Young's modulus E of the fibers is much greater than that of the binder) the 
following formulas are obtained in [2, 3] (to the accuracy cited in [2] only axial stresses ~ are nonzero in the 
fibers): 

M 

a i j k l  = ES ~ 7~7~7~'7~P~; (1.1) 
a = l  

in the ath layer of reinforcing fibers 

~ " E ( 1 . 2 )  crij=E7777 ~ 7kTlek,, e ,  = 
k,l=l,2 k,l=l,2 

Here S is the volume content of fibers in the composite;/~, is the specific (related to S) content of fibers in the 
ath reinforcing famil3;; {77} is the direction cosines of the ath family fiber axis; M is the number of reinforcing 
families over the period of the composite structure; {ekt) are the averaged strains of the composite [i.e., the 
strains determined by solving the problem of deformation of a material with elastic constants {aijkl} (1.1)]. 
Note that formulas (1.1), (1.2) were used systematically before they were rigorously proved mathematically. 

For the specific contents { ~  } the following relations hold: 

M 

# ~ > 0  (a = 1 , . . . ,M) ,  ~ / ~  = 1. (1.3) 

When the fibers are arranged parallel to the plane Oxlx2 (Fig. 1), the direction cosines are 7~ = cos q;~, 
7~ = sin ~ ' ,  7~' = 0, where ~ ,  is the angle between the fiber axes of the ath family and the Oxl axis. 

2. Formulat ion of the  Design Problem.  If the composition and the structure of the composite are 
known, one can determine its averaged elastic characteristics and local stresses in the fibers using formulas 
(1.1) and (1.2). If the strength criterion of the fibers is known, for example, if it is taken as 

0 < f ( ~ i )  < ~*, (2.1) 

one can also judge the presence or absence of failure of fibers in the composite when averaged stresses (aii} are 
applied to it (the latter are determined from the averaged Hooke's law o'ij = aijklekl). The problem described 
is the problem of calculation of composites. Much attention has been paid to this problem in the works of 
different authors (see, for example, references in [2]). 
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Fig. 1 

Let us consider the design problem (DP) of a controlled-property composite, which is the reverse of the 
problem of calculation. Its descriptive formulation is as follows: what composition and structure a composite 
should have to possess an assigned set of averaged elastic characteristics {aijkt} and withstand application of 
averaged stresses {ZrO} without fracture. 

R e m a r k  1. The composition and structure of this type of composites are described by the set of 
quantities S, M, {~v4}, and {tt4}. 

The design problem is ill-posed [4]. Consequently, its study without adequate mathematical methods 
provides little information. Let us consider the design problem from a mathematical viewpoint. 

A Composite Possesses a Preassigned Set of Averaged Elastic Characteristics {ao.kz }. As follows from 
(1.1), all the characteristics are expressed in terms of four functions of the arguments {~,~} and {tt4}: 

M M 

Yl = ~ #a COS 4 ~ot, Y2 = ~ tt4 sin 4 ~4, 
4=1 a = l  
M M 

W = ~ ~ #~ sin ~4 cos 3 ~4, W = - -  ~ #~ sin s qo~ cos qo~. 
a = l  4=1 

(2.2) 

Solving (1.1) with respect to yl, y2, y3, and y4, we obtain the problem with respect to the unknowns 

(2.3) 

S, M, {q4}, and {g4}: 

M M 
a l l l l  a2222 

Y ~  ~t4 cos 4 ~ 4  = Ya - Y ~  #~ sin 4 r  = y2 = , 
tr=a E S  ' E S  4=1 

M a l l 1 2  M a2221 
~--~#~176176 E S '  ~- ' ] t t~sin3~4c~ E---if- 
o~=1 4=1 

This yields the relation ala22 = a 1 2 1 2  = (1 /2) (ES - allla - a2222) between the averaged elastic 
characteristics, which is the solvability condition for the system (1.1) with respect to yl, y2, y3, and y4. 

Equation (2,3) and condition (1.3), which together form the convex combination problem (CCP) [1] 
relative to volume contents of the fibers {tta}, is a mathematical formulation of the condition that a composite 
possesses an assigned set of averaged characteristics {aijkl }. In the general case the. solvability condition of 
the resulting problem is as follows. 

P r o p o s i t i o n  1 [5]. Problem (1.3), (2.3) at M/>  5 has a solution if and only if a point y = (ya, y2, y3, y4) 
belongs to the set convP, where F = {(cos4% sin4% sinqocos3r s in3~cos~)  : ~ E q)}, ~ is a set of 
permissible laying angles, and cony is a convex hull. 

Composites with Symmetrically Laid Fibers. Symmetrical laying of fibers characterized by the relations 
tfli = qOM-i, ~ti = t t M - i  ( M  is an even integer) is frequently used in practice. In this case the last two 
relations from :(2.2) vanish identically, and only two first equations remain in (2.3). The solvability condition 
of the problem (1.3), (2.3) follows from Proposition 1 if we set in it F = {(cos 4 ~, sin 4 ~) : ~ E (I)} = 
{(r?, (1 - v/~)2), r 1 E cos 4 q~}, where 7/= cos 4 ~, cos 4 (I) = {77 = cos 4 ~ :  qo E (/)} and M/>  5. 

Fibers Remain Intact upon Application of the Averaged Stresses {tYij} to the Composite. If {aijkl } a r e  

specified, the averaged strains are given by the formula eij = {aij~.t}-lakl �9 Substituting this expression into 
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(1.2), we obtain an averaged strength criterion below (which is called so because, in distinction to (2.1), it is 
formulated in terms of averaged stresses [6-8]) 

k,l=l,2 

in the a th  family of reinforcing fibers. 
Since {7~} are expressed in terms of 

in the a th  family of reinforcing fibers. Here 

~/~/~ E {aklmn} - l~ < a* (2.4) 
m,n=l,2 

~a  and {aijkl } in terms of y, one can rewrite (2.4) as 

F(~4,  y, am,)  <~ a* (2.5) 

F is a known function [obtained from the left-hand side of (2.4) 
by replacement of {7~} and {aijkz} by their expressions in terms of qoa and y]. To formulate the requirement 
of fulfillment of the strength criteria for all families of reinforcing fibers, we introduce the function 

M(~m,,  {~4}) = max F4(~4, y, am,) 

(the maximum is taken over all laying angles ~4 for all families of fibers actually involved in the composite, 
i.e., of those fibers for which the condition #4 > 0 holds) and require the fulfillment of the condition 

M(gm, ,  {~o4}) ~< a*. (2.6) 

Inequality (2.6) is a mathematical formulation of the condition of the absence of fracture for composite 
fibers under prescribed averaged stresses. 

R e m a r k  2. Only the l~Ting angle of fibers of the a th  family ~o4 appears as an argument in the strength 
condition of this family. This is used below. 

Typical Design Problems (Mathematical Formulations). 
1) Designing a composite with a preassigned set of averaged characteristics {aijkl}: one should solve 

the problem (1.3), (2.3). 
2) Designing a composite of maximum strength with a preassigned set of averaged elastic characteristics 

{ai/kz}: it is required to solve the problem (1.3), (2.3); in addition, the left-hand side of (2.6) should contain 
a minimum value M(~rrnn, {~a}) ~ rain. 1/M(amn, {r has the meaning of the strength reserve. 

3) Designing a composite with a preassigned set of averaged elastic characteristics, which remains 
intact after application of preassigned averaged stresses: it is required to solve the problem (1.3), (2.3), (2.6); 
(2.6) in this case should be valid for averaged stresses aii from a certain preassigned set E. 

4) Designing a composite with a preassigned set of averaged characteristics {aijkl} with minimum 
volume of fibers: it is required to solve the problem (1.3), (2.3); in addition, the quantity S (the volume 
content of fibers) should be given a minimum value S ~ min. Note that if the fiber is heavier than the binder 
(which is the case, as a rule), the problem stated is also the problem of designing a composite of minimum 
weight. 

Discrete Design Problem. It is often inexpedient or difficult to consider the problem with infinite 
number of possible laying angles. In this connection, a discrete design problem which appears in the case 
where the set of possible laying angles has the form ~ = {~oZ, /3 = 1 , . . . ,  N} is of considerable interest. At 
large N the discrete problem approximates the continuous one (for details see [9]). 

Method of Numerical Solution of the Design Problem. Let us introduce the vectors yo = 
(cos 4 ~o~, sin 4 ~o~, sin~r cos 3 ~ ,  sin 3 ~Z cos ~ )  e R 4,/3 = 1 , . . . ,  N. Then problem (1.3), (2.2) can be written 
in the form , 

M m 

EYlctl.ta--'--yl; # 4 / > 0 ;  a = l , . . . , M ;  ~#4=1, 
4=1 4=1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2.7) 

M 
E Y44#4 = Y4. 
4=1 

739 



Let us solve the resulting problem by the method of convolution oi systems ot hnear equations [1O] (called so 
by analogy with the method of convolution of systems of linear inequalities [11]). The method is based on the 
solvability of a one-dimensional CCP 

m E r l  

y ~ B = x ,  ~Z/>0 ( / 3 = l , . . . , m ) ,  ~ / 3 = 1  (2.8) 

in explicit form. 
P r o p o s i t i o n  2. 
1. Problem (2.8) is solvable if and only if the condition P: yl <. x <. ym holds [without loss of generality 

it is assumed that points are ordered in increasing order in (2.8): yl < y2 < ..- < ym]. 
2. Let the condition P be satisfied, then the point x is representable in the form x = Aaya + AbYb as 

a convex combination of the points {Ya} and {yb} such that ya ~< x and Yb > x. For the given a and b, we 
introduce the notation 

sn = {s ,~)  = (o , . . . ,  o, Aa, 0 , . . . ,  O, Ab, 0 , . . . ,  O) ~ R m. 
(2.9) 

T T 
at the ath place at the bth place 

Then the set of solutions of the problem (2.9) is defined by the convolution formula 

M1 

,~  = ~ s,~A,. (2.10) 
n=l 

Here M1 is the total number of' segments of the form [Ya, Yb] containing the point x and {An} are arbitrary 
numbers satisfying the condition 

M1 
A, j>0  (r /= 1 , . . . ,M1) ,  ~ ] A ,  = 1. (2.11) 

n=l 

R e m a r k  3. The values of Aa and Ab from (2.9) are expressed as Aa = ( x -  Ya) / ( l ib-  Ya) and Ab = 1 -A~. 
Convolution of ~he system (2.7) is carried out as follows. The first equation in (2.7) is a one-dimensional 

CCP. Its solution, if the problem is solvable (see item 1 of Proposition 2), has the form (2.10), (2.11). We 
substitute (2.10) into the second, third, and fourth equations (2.7). Changing the summation order, we obtain 

M1 M 

S 
nl= l  a = l  

Denote 

. . . . . . . . . . . . . . . . . . . .  ~ . . . . . .  

M1 M 

n l= l  - a = l  

(2.12) 

M 

a = l  

As is evident, the first equation in (2.12) together with (2.11) is again a one-dimensional CCP whose solution 
is found on the basis of Proposition 1. As a result, we solve all four equations in (1.3), (2.2) in four steps of 
the algorithm proposed (with the proviso that in each step the condition P is satisfied). The solution of the 
problem (1.3), (2.2) (if any) is given by the formula 

M4 
, ~  = ~ A,,4R,,4,, A,4/> 0, ~ A,~ = 1, (2.13) 

n4=l */4=1 
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3 /" 

Fig. 2 

where 
M1 M2 M3 M 

P~4 : {Pr/4~ = { ]~ ~ '~ Sr/41,3SlJ'3T/2Sl'/2//1Sr/10~ } 
r/l= 1 T/2= 1 T/3:1 o~=l" 

As follows from (2.13), the number of solutions of problem (1.3), (2.2) is infinite and is expressed in 
terms of the finite number of vectors {Po4}" 

R e m a r k  4. After replacement of /1//4 by Mk, the formula (2.13) gives the solution of the first k 
equations. As was shown in [8], the set of solutions given by (2.13) remains unchanged if vectors having more 
than k + 1 nonzero coordinates are excluded during convolution in the kth step (by analogy with [11] this 
method is called reduced convolution). 

Remark on the Methods of Solving the Design Problem. The problem under consideration is reduced 
to a CCP, which can be solved graphically for two equations (the CCP that appears for symmetrical laying), 
and only numerically in the case of greater dimensionality. Let us cite examples of solutions for both cases. 

E x a m p l e  1. Let it be required to create a composite with a symmetrical structure and the averaged 
elastic characteristics a n n  = 0.15 �9 1011 Pa and a2222 = 0.03 �9 1011 Pa from a fiber with Young's modulus 
E = 0.7 �9 1011 Pa (fiberglass) with the given volume content of fibers S = 0.4 and minimum volume content 
of fibers. 

From (2.2), we obtain (by virtue of symmetry only two first equations are considered) 

at S = 0.4. 

The set F = {r/, (1 - x/~) 2 : r/E [0, 1]} is shown in Fig. 2, from which it is evident see that y E cony F and the 
problem is solvable. An infinite number of designs are possible. Let us find a design with minimum content of 
fibers (i.e., satisfying the condition S ~ min). Let S vary from 0 to 1. In this case the point y moves along the 
ray L, as shown in Fig. 2. The lowest value of S at which y still belongs to conv F corresponds to the point A 
and equals 0.25. The appropriate design of a composite with minimum fiber content is #1 = B A / B C  = 0.9, 
#2 = A C / B C  = 0.1 and the laying angles are ~l  = 90 ~ qa2 = 0. 

E x a m p l e  2. Let it be required to create a composite with the following averaged elastic characteristics: 
a l l l l  = 0 .25 �9 1011 Ph ,  a2222 -~ 0.1 �9 1011 Pa. The fibers with Young's modulus E = 0.7 �9 1011 Pa are used 
(fiberglass). The volume content of fibers is S = 0.6. 

Let there be no restrictions on the laying angles (b = [-7r/2, ~r/2]. After discretization of the interval 
[-Tr/2, a'/2] with the step ~5 = r /15  we obtain a computer-solvable discrete DP. From calculations (on a 
ES 1033 computer; the computation time is ,,~ 1 rain, including translation), we obtained M4 = 281 vectors 
{P'14}" We cite some of them: 

P1=(0.1736, 0.0545, 0, 0, 0, 0, 0.4009, 0, 0, 0.2285, 0.1426, 0, 0, 0, 0 ) , . . . ,  

P107 = (0, 0, 0.2116, 0, 0, 0, 0, 0.3946, 0.1819, 0, 0.0004, 0, 0.2115, 0, 0), . . . .  
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The set of designs of a composite with the averaged characteristics preassigned above has the form 

#i = 0.1736Ai + . . .  + O- AI07 + " " ,  

/z2 = 0.0545A1 + . . .  + O- Aio7 + " " ,  

#3 = 0 �9 A1 + " "  + 0.2116Aio7 + . - . ,  

]24 -= 0 �9 A 1 ~- --- -~- 0" A107 + - . . ,  
#5 = 0 �9 A1 3v "'" "~- 0" A107 -[- " '" ,  
/z6 = 0 - ~1 "~" "'" + O" /~107 -[- " '" ,  
#7 = 0.4009A1 + . . -  + O" A107.+' ' ' ,  
#8 = 0 �9 A1 + "'" + 0.3946A107 + " ' ,  

#9 = O- Al + .-. + 0.1819)qo7 + . . - ,  
ftlO = 0.2285A1 + . . .  + O- AlO7 + --- ,  
/Zll = 0.1426A1 + ..- + 0.004Alo7 + . . - ,  
#12 = O.)tl +. . . -4-  0-)tlO7 + - . . ~  
#13 = O. A1 + . . .  + 0.2115ALO7 + -- . ,  
# 1 4 = 0 " A l + ' " + 0 " A 1 0 7 + " ' ,  
#15 = 0. A1 + ' "  + 0. A107 + " ' ,  

where Al,. . . ,A!07,. . . ,A281 /> 0; A1 + " "  + $107 + " "  + A281 = 1. 
3. Des ign ing  a M a x i m u m - S t r e n g t h  C o m p o s i t e .  As was noted in Remark 2, the strength of the 

fibers of the c~th family is determined by their laying angle. In view of this, the problem M(qmn, {~a}) --+ rain 
subject to conditions (1.3), (2.3) will be solved if we are able to select, among the possible laying angles of 
fibers {ga, /3 = 1 , . . . ,  N}, the families {9~} satisfying the two conditions: 
1) the conditions (1.3), (2.3) are fulfilled for the family {9~}, 
2) the quantity rnax{f~} is minimum for the family {~,}.  

To satisfy these conditions we proceed as follows. We enumerate the laying angles of fibers in increasing 
order of the values {f~} [determined in (2.4)]. We take the angle r and check whether relations (1.3) and 
(2.3) hold for the vector y l  corresponding to the angle. If not, we add the angle 92 to 91 and so On, until 
for a certain family {~1, - . . ,  ~2K} ({Yl , - . . ,  YK}) relations (1.3), (2.3) hold for the first time. The fulfillment 
of relations (1.3), (2.3) is checked by the above-mentioned methods. After that, the solution of the problem 
M(qmn, {~a}) ~ rain subject to conditions (1.3), (2.3) is given by the formula (2.13), but the vectors 
{y l , - . - ,  Yff} should be used instead of the ve c to r s  { Y l , . - . ,  YM).  In this case the equality below is valid: 

minM(qm, ,  {9,})  = fK. (3.1) 

R e m a r k  5. The DP of the highest-strength composite is solvable if and only if the DP of a composite 
with preassigned averaged characteristics is solvable. In view of (3.1) the strength condition for the highest- 
strength composite can be written as fK ~< q* (at fK > q* some families of reinforcing fibers fail). 

Remark on the"Methods of Solving the Problem. The problem (appearing in the case of symmetrical 
laying) can be solved graphically for two equations and numerically in the case of greater dimensionality. 

E x a m p l e  3. It is required to create a composite with averaged elastic characteristics 
a l l l l  = 0 .15 .1011  Pa and a2222 = 0.03 �9 1011 Pa. Fibers with Young's modulus E = 0.7.1011 Pa (iberglass) 
are used. The given volume content of the fibers is S = 0.4. The composite should have maximum possible 
strength upon application of an averaged stress of the type qll # 0, o'ij = 0 at ij ~ 11 (tension along the Oxl 
axis). 

We us take the strength condition of the fiber material as 

f(q j) = lqual q* (for fiberglass q* = 0.024.1011 Pa). (3.2) 

From (1.2), the stresses in fibers of the a th  family are 

= E 

k,1=1,2 

The averaged strains in this case have the form 

a l l l l O ' l l  a l 1 2 2 q l l  
e l l  - -  A ' e22 = A ' e l2  = 0,  

2 The value is calculated from a1111 and a2222 (2.2) and equals 0.05.1011 Pa. w h e r e / k  = a l l l l a 2 2 2 2  - .  a1122, a1122 

H e n c e ,  

q n  a = E ( a l l l l  cos2  9 a  - a1122 sin 2 9 a ) O ' l l / A .  
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0.01 0.175 1 

Fig. 3 

q 

Substituting this expression in the local strength condition, we obtain the averaged strength criterion 

o', a = E(al l l l  COS 2 ~a -- a1122 sin 2 ~a)O'll//k ~ 1 (3.3) 

in the o~th family of reinforcing fibers. 
Let us consider the plot of the function f,~ = f(0)  = I( 25 - 100x/-~)a11/~ obtained from (3.3) at r /=  

cos4 qz (shown in the upper part of Fig. 3). In the lower part of Fig. 3 the line F = {(T/, (1 - v~)  2) : 7/E [0, 1]} 
is drawn and the system of increasing sets ~(cr) = {f(r/) ~< or} and F(cr) = {(~7, (1 - v/~)2) : r] E ~(~)}, and 
also the point y = (1/16, 9/16), which is a solution of the first two equations (2.3) (see remark on symmetrical 
laying), are shown. The point y is first covered by the set cony F(cr) at cr = Crmin = 181~rlt/~* [. Accordingly, the 
design for the highest-strength composite is as follows: the fiber laying angles ~1.4 = 4"720 and ~2,3 ---- 4"500 
and the content of fibers in reinforcing families #1.4 = 0.16 and #2,3 = 0.34. The strength criterion for the 
material designed is representable in the form Crmi n ~ 1 or 181all [ ~ cr*. 

E x a m p l e  4. It is required to design a composite with a maximum strength with the same averaged 
elastic characteristics as in Example 2. Let the averaged stresses a l l =  0.01 �9 1011 Pa and aij = 0 if i j  y~ 11 
(axial tension along the Oz l  axis) be applied to the composite. The strength conditions for the fiber material 
are taken in the form (3.2). The averaged strength criterion has the form (3.3). 

We Calculate the values (f/3} and renumber {~2~} in increasing order of {fz} (see Table 1, where the 
values fl correspond to the initial numeration, while 7 to the new one). After that, we solve the problem (1.3), 
(2.2) for the families @k = {r . . . .  , ~2k} beginning from k = 1 until at a certain k = K it turns out to be 
solvable for the first time. It was found in numerical calculations (EC 1033, calculation time ,~ 10 min) that 
K = 11, fK = f t l  = 0.9529, and the set of solutions of the problem (1.3), (2,2) for the system of vectors 
{Yt , . . - ,Yt l}  has the form 

M4 = 7, 

P1 = (0, 0, 0.2116, 0, 0, 0, 0, 0.3948, 0.1813, 0.0007, 0, 0, 0.2115, 0, 0), 

P2 = (0~ 0, 0.2116, 0, 0, 0, 0, 0.3946, 0.1819, 0.0007, 0, 0, 0.2115, 0, 0), 

P3 = (0,0,0.2116,0,0,0,0,0.3945,0.1821,0,0,0,0.2113,0,0), 
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TABLE 5 

1 0.0154 
2 0.0154 
3 0.2713 
4 150 0.2713 
5 0.3121 
6 11210.3121 
7 8 0.4113 
8 9 0.4113 
9 4 0.6546 
1 0 1 3  0.6546 
11 3 0.9528 
12 14 0.9528 
13 2 1.1552 
14 15 1.1552 
15 1 1.2268 

P4 = (0, 0, 0.2114, 0, 0, 0.0003, 0, 0.3938, 0.1828, 0, 0, 0, 0.2116, 0, 0), 

P5 = (0, 0, 0.2115, 0, 0, 0.0003, 0, 0.3938, 0.1828, 0, 0, 0, 0.2116, 0, 0), 

P6 = (0, 0, 0.2114, 0, 0, 0.0003, 0, 0.3938, 0.1828, 0, 0, 0, 0.2116, 0, 0), 

P7 = (0, 0, 0.2116, 0, 0, 0.0006, 0, 0.3932, 0.1830, 0, 0, 0, 0.2116, 0.0). 

It is evident that the solutions obtained are close to one another (coincidence of some of them is the 
result of computer approximation). An explanation to this can be found in [7]. By virtue of the foregoing, 
any solution obtained, for example P2 (coincident with the solution P107 from Example 2), can be taken as 
the final solution. The corresponding design of the maximum strength composite is as follows: the specific 
content of fibers in reinforcing families is 

family #3 = 0.2116, 
family #s = 0.3946, 
family /~9 = 0.1819, 
family /zll = 0.0004, 
family /~la = 0.2115, 

laying angle 
laying angle 
laying angle 
laying angle 
laying angle 

~23 = -~r/2 + 3~r/15, 
~8 = -~ ' /2 + 8~'/15, 
~9 = - ~ ' / 2  + 9~'/15, 
~11 = -~r/2 + llr~/15, 
~13 = -~ ' /2  + 13~'/15. 

The remaining reinforcing families are not used. 
The strength condition of the composite designed (see Remark 6) can be written as f l l  ~< 1. Since for 

the resulting design f l l  = 0.9529, the composite designed endures the load applied. It should be noted that the 
composite fabricated in accordance with the design P1 from Example 2 would fail at the same averaged load, 
namely: the fibers of the first (fl = 1.2268 > 1), second, :and fifteenth (f2 = f15 = 1.1552 > 1) reinforcing 
families would fail (see Table 1). 

R e m a r k  6. In Example 4, the strength criterion of fibers is the first-order criterion [i.e., f ( taal )  = 
Itlf(aaa)]. This enables one to calculate the ultimate strength of the composite designed under uniaxial tension 
- ~  along the Oxl axis. We have fl1 = cr*l~r~/0.01[ f(0.01) = 1, where a~ = ~*0.01/f(0.01) = a*1.045 Pa. 

Designing a Composite Withstanding Pressigned Averaged Loads. Let it be required to design a 
composite with a preassigned set of averaged characteristics withstanding averaged stresses ~ij E E (i.e., 
stresses from a certain class E). In view of (2.4) and (2.5), this means that the following requirements should 
be satisfied: 
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1) Only those families of reinforcing fibers are involved in the composite for which 

fa = F ( ~ ,  y, O'mn ) <<. 0"* for all ~rnn E E; (3.4) 

2) The conditions (1.3), (2.2) are satisfied. 
Thus, to solve the problem, it is sufficient to select laying angles satisfying (3.4) and then solve for 

them the problem (1.3), (2.2) (methods for solving the problem are described above). 
R e m a r k  7. Naturally, the question about allowance for the strength of the second component (binder) 

arises, which can be solved on the basis of further development of the methods proposed above (see [12, 1:3]). 
Note that qualitative criteria that enable detection of the least strong component of the composite are reported 
in [14], and the averaged criteria for the absence of failure of the binder of fibrous composites reinforced by 
high-modulus fibers are obtained in [15-20]. 

R e m a r k  8. In the general case, DP and CCP have a great number of solutions. In this connection, it 
should be noted that the set given by the algorithm is, as a rule, optimal (i.e., cannot be reduced without loss 
of solutions). An attempt to reduce the set of solutions obtained is equivalent to transition to the search for 
particular solutions [21]. One of the ways of doing this transition is to formulate problems of optimal designing 
(understood in a narrow sense as the statement of problems containing a minimized/maximized function). 
The reduction of the set of solutions in such cases (up to uniqueness of the solution) can be observed in the 
above examples. 

It should be noted that interest in DP in the statements presented in this work is constant, although 
progress in the research of this problem was hindered because of the application of inadequate mathematical 
methods. As an example, we refer to the monograph [22], in which an analog of CCP (1.3), (2.2) is formulated 
and discussed, and which demonstrates that without using adequate mathematical methods the CCP cannot 
be efficiently studied. 
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